Gas entrapment and microbial N2O reduction reduce N2O emissions from a biochar-amended sandy clay loam soil

نویسندگان

  • Johannes Harter
  • Ivan Guzman-Bustamante
  • Stefanie Kuehfuss
  • Reiner Ruser
  • Reinhard Well
  • Oliver Spott
  • Andreas Kappler
  • Sebastian Behrens
چکیده

Nitrous oxide (N2O) is a potent greenhouse gas that is produced during microbial nitrogen transformation processes such as nitrification and denitrification. Soils represent the largest sources of N2O emissions with nitrogen fertilizer application being the main driver of rising atmospheric N2O concentrations. Soil biochar amendment has been proposed as a promising tool to mitigate N2O emissions from soils. However, the underlying processes that cause N2O emission suppression in biochar-amended soils are still poorly understood. We set up microcosm experiments with fertilized, wet soil in which we used 15N tracing techniques and quantitative polymerase chain reaction (qPCR) to investigate the impact of biochar on mineral and gaseous nitrogen dynamics and denitrification-specific functional marker gene abundance and expression. In accordance with previous studies our results showed that biochar addition can lead to a significant decrease in N2O emissions. Furthermore, we determined significantly higher quantities of soil-entrapped N2O and N2 in biochar microcosms and a biochar-induced increase in typical and atypical nosZ transcript copy numbers. Our findings suggest that biochar-induced N2O emission mitigation is based on the entrapment of N2O in water-saturated pores of the soil matrix and concurrent stimulation of microbial N2O reduction resulting in an overall decrease of the N2O/(N2O + N2) ratio.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Response of N2O emissions to biochar amendment in a cultivated sandy loam soil during freeze-thaw cycles

In the last decade, an increasing number of studies have reported that soil nitrous oxide (N2O) emissions can be reduced by adding biochar. However, the effect of biochar amendment on soil N2O emissions during freeze-thaw cycle (FTC) is still unknown. In this laboratory study, biochar (0%, 2% and 4%, w/w) was added into a cultivated sandy loam soil and then treated with 15 times of FTC (each FT...

متن کامل

Greenhouse gas emissions from sub-tropical agricultural soils after addition of organic by-products

As the cost of mineral fertilisers increases globally, organic soil amendments (OAs) from agricultural sources are increasingly being used as substitutes for nitrogen. However, the impact of OAs on the production of greenhouse gases (CO2 and N2O) is not well understood. A 60-day laboratory incubation experiment was conducted to investigate the impacts of applying OAs (equivalent to 296 kg N ha(...

متن کامل

Structure and Activity of Denitrifier Communi- ties in Biochar-Amended Soil and Their Impact on N2O Emissions

Nitrous oxide is a greenhouse gas with a global warming potential about 300 times higher than CO2. The main sources of N2O are microbial-mediated nitrogen transformation reactions in soils. Denitrification represents one of the major N2Oproducing pathways in oxygen-limited zones. Soil biochar amendment has been demonstrated to reduce N2O emissions in microcosms and in the field. Although N2O em...

متن کامل

Effects of Biochar Addition on CO2 and N2O Emissions following Fertilizer Application to a Cultivated Grassland Soil

Carbon (C) sequestration potential of biochar should be considered together with emission of greenhouse gases when applied to soils. In this study, we investigated CO2 and N2O emissions following the application of rice husk biochars to cultivated grassland soils and related gas emissions tos oil C and nitrogen (N) dynamics. Treatments included biochar addition (CHAR, NO CHAR) and amendment (CO...

متن کامل

Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions?

Agricultural soils represent the main source of anthropogenic N2O emissions. Recently, interactions of black carbon with the nitrogen cycle have been recognized and the use of biochar is being investigated as a means to reduce N2O emissions. However, the mechanisms of reduction remain unclear. Here we demonstrate the significant impact of biochar on denitrification, with a consistent decrease i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016